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A Model Details

A.1 Example of Diversified SMILES

Fig.A.1. An example of diversified SMILES.

Figure A.1 illustrates three ways of slicing a SMILES string. In this case,
the canonical SMILES string is “C[C@H](O)c1cccc(CC(N)=O)c1.” The numbers
and arrows on the canonical molecular structure in the left panel indicate the
traversal order of the atoms. The right panel shows the scaffolds and decorations
after slicing the molecular structure between atoms 2 and 4, 8 and 9, and 9
and 10. Decorator is fully trained on different slice representations of the same
molecule, which resolves the problem of substantial variation in SMILES strings.

A.2 Self-attention Mechanism

The atomic positions are input to the following sinusoidal positional encoding
function:

PE(pos,2i) = sin(pos/100002i/dmodel),

PE(pos,2i+1) = cos(pos/100002i/dmodel),
(8)

where pos is the unique position of each atom and i is the i-th dimension of
the atomic embedding dimension dmodel. Finally, the positional encoding is
added to the bottom of the decoder stack along with the scaffold and decoration
embeddings.

The transformer decoder consists of a stack of decoder layers. Each decoder
layer consists of two multi-head attention modules with corresponding layer
normalization and a feedforward neural network (see middle panel of Fig. 1). The
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scaffold providing the global scaffold features is input to the multi-head attention
(② in Fig. 1). The masked multi-head attention module masks the atoms beyond
position i to prevent future information exposure. Its input is the decoration (③
in Fig. 1) that captures the local features between the generated atoms and the
global semantics of each generated atom and the scaffold.

Concretely, the input representations of the scaffold and decoration consist of
query, key, and value matrics, denoted as Q ∈, K, and V . The self-attention is
given by

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V , (9)

where dk represents the dimension of the key matrix. The output of the multi-
head attention module is then fed into a feedforward neural network to generate
the decorations. Finally, the generated decorations and scaffolds are combined
into SMILES representations of molecules (④ in Fig. 1).

A.3 Overview Algorithm

Algorithm 1 shows an overview of the proposed models. First, the generator Gθ

is pre-trained by maximum likelihood estimation on the real SMILES dataset
Dr. Next, the generator produces dataset Dz with the same number of SMILES
strings as Dr to balance the two datasets. The two datasets are shuffled before
pre-training the discriminator Dϕ. Finally, the generator and the discriminator
are alternately trained in adversarial training and parameters θ are updated with
an MC search using the policy gradient.

B Experiment Details

B.1 Diversity Calculation

The diversity was calculated from the Tanimoto similarity between the Morgan
fingerprints of any two novel molecules in the generated set. Let Vi and Vj be the
Morgan fingerprints of two arbitrary generated novel molecules. The Tanimoto
similarity is then defined as

Sim(Vi, Vj) =
|Vi&Vj |

|Vi|+ |Vj | − |Vi&Vj |
,

where | · | represents the number of bits set in the fingerprints, and & is the
common bits in the two fingerprints. The diversity is then calculated as

Div(Dz) = 1− 1

|Dz|
∑

Vi,Vj∈Dz

Sim(Vi, Vj).
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Algorithm 1: Procedures of SpotGAN and SpotWGAN
Data: a SMILES dataset Dr

Initialization : the generator Gθ, the discriminator Dϕ

// Pre-process the dataset Dr.
1 Use diversified SMILES to pair scaffold and decoration slices.
2 Compute segment IDs and offset IDs for the scaffolds and decorations (② and ③

in Fig. 1). // Pre-train the generator on Dr.
3 for i = 1 → f_epochs do
4 Update θ with maximum likelihood estimation (④ in Fig. 1).
5 end
6 Generate a dataset Dz.
7 Shuffle datasets Dr and Dz (⑤ in Fig. 1). // Pre-train the discriminator

on the shuffled dataset.
8 for i = 1 → d_epochs do
9 Update ϕ with cross entropy (SpotGAN) or Wasserstein distance

(SpotWGAN) by Eq.(7) (⑥ in Fig. 1).
10 end

// Adversarial training of Gθ and Dϕ.
11 for i = 1 → epochs do

// Train the generator Gθ.
12 for j = 1 → f_steps do
13 Generate a dataset Dz based on the given scaffolds.
14 Shuffle the datasets Dr and Dz.

// Check if SpotGAN is executed.
15 if SpotGAN then
16 Compute RGθ by Eqs. (2) and (5) (⑦, ⑧ in Fig.1).
17 end

// Check if SpotWGAN is executed.
18 if SpotWGAN then
19 Execute SpotWGAN.
20 end
21 Update θ by Eq. (6) (⑨ in Fig. 1).
22 end

// Train discriminator Dϕ.
23 for k = 1 → d_steps do
24 Update discriminator’s parameters of ϕ.
25 end
26 end
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B.2 Optimized Properties

Drug-likeness. When calculating the QED scores of molecules, we generally assign
different weights to eight molecular descriptors: the molecular weight (MW),
octanol-water partition coefficient (ALOGP), number of hydrogen bond donors
(HBDs), number of hydrogen bond acceptors (HBAs), molecular polar surface
area (PSA), number of rotatable bonds (ROTBs), number of aromatic rings
(AROMs), and number of structural alerts (ALERTS). The calculation is as
follows:

QED = exp(

∑8
i=1 Wi ln di)∑8

i=1 Wi

,

where di and Wi represent the desirability function and weight of the i-th
descriptor, respectively. Usually, the weights of the eight molecular descriptors are
obtained through chemical experiments. In practice, the QED score is calculated
by a function in the RDKit tool. The larger the QED score, the more drug-like
the molecule.

Solubility. In the physical sciences, solubility is quantified by logP, where P is
the partition coefficient (defined as the ratio of concentrations of a molecule in a
mixture of two immiscible solvents at equilibrium). The logP is calculated as

logP = log
co
cw

,

where co and cw indicate the substance activity in the organic and water phases,
respectively. In practice, we calculate the logP of a molecule using the RDKit
tool. The larger the logP value, the higher the lipophilicity of the molecule to
the organic phase.

Synthesizability. Synthesizability is evaluated in terms of the SA score:

SA = rs −
5∑

i=1

pi,

where rs indicates the “synthetic knowledge” gained by analyzing the features of
synthetic molecules. rs is the ratio of the summed contributions from all fragments
to the number of fragments in the molecule. In this work, we calculated rs from
the experimental results [10]. pi (i ∈ {1, · · · , 5}) represents the ring complexity,
stereo complexity, macrocycle penalty, size penalty, and bridge penalty, which
were calculated using the RDKit tool. Note that the larger the SA score, the
easier is the synthesis of the molecule.

BIO. The BIO score measures the probability of interaction between a molecule
and a target protein. In this work, we chose dopamine receptor D2 (DRD2) as
the target protein and used a random forest classifier in the Scikit-learn tool [30]
to calculate the BIO scores.
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Specifically, we first collected DRD2-molecule interaction data from the
ChEMBL30 (accessed 2022-3-17) dataset [12]. Then, we used the Ki (unit:
nmol/L) values in ChEMBL217 as the interaction data. After excluding missing
values and duplicated molecules, we obtained 6652 molecule-Ki data. Next, we
built 500 decision-tree classifiers using the random forest classifier for binary
classification. We used the SMILES representation of a molecule as input to the
classifier, which was then converted to a 2048-dimensional ECFP4 (extended
connectivity fingerprint, up to four bonds). The labels of the binary classifier
were defined as follows:

label =

{
0 if 9− logKi > 7,

1 otherwise.

Finally, the output of the classifier is calculated as the predicted probability with
the label of 1, which is the BIO score.

B.3 Drug-likeness Evaluation Results

Figure B.1 shows the QED distributions of the molecular structures on the ZINC
dataset. Figures B.2 and B.3 show the 12 molecular structures with the best
QED scores on the QM9 and ZINC datasets, respectively.

Fig. B.1. QED Distributions with drug-likeness as the optimized property on the ZINC
dataset.

B.4 Solubility Evaluation Results

To verify the usefulness of our models when the optimized property was the
solubility, we plotted the logP distributions of our models generated on the QM9
and ZINC datasets. The results are displayed in Fig.e B.4. The validity on the
QM9 dataset was below 90%, mainly for the following reasons: (1) The QM9
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(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.2. Top-12 molecular structures with their QED scores on the QM9 dataset.

(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.3. Top-12 molecular structures with their QED scores on the ZINC dataset.
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dataset contains many small molecules with limited chemical rules for decorations
(average decoration length < 5); (2) the generated molecules (Fig. B.5 and B.6)
tended to be lipophilic, resulting in extended carbon chains and ring structures
containing more than seven carbon atoms.

(a) Distributions of logP on the QM9 dataset.

(b) Distributions of logP on the ZINC dataset.

Fig. B.4. Distributions of logP scores with solubility as the optimized property.

B.5 Synthesizability Evaluation Results

Figure B.7 depicts the SA distributions of the molecular structures on both
datasets. Figures B.8 and B.9 show the 12 molecular structures with the best SA
scores on both datasets, respectively.

B.6 Property Optimization Curve on ZINC Dataset

Figure B.10 shows the property scores of SpotGAN on the ZINC dataset versus
epoch.
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(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.5. Top-12 molecular structures with their logP scores on the QM9 dataset.

(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.6. Top-12 molecular structures with their logP scores on the ZINC dataset.
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(a) Distributions of SA on the QM9 dataset.

(b) Distributions of SA on the ZINC dataset.

Fig. B.7. Distributions of SA scores with synthesizability as the optimized property.

(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.8. Top-12 molecular structures with their SA scores on the QM9 dataset.
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(a) Training dataset. (b) SpotGAN. (c) SpotWGAN.

Fig. B.9. Top-12 molecular structures with their SA scores on the ZINC dataset.

Fig. B.10. Property scores as functions of epoch on the ZINC dataset.
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B.7 Case Studies of Bioactivity Optimization

Table B.1. Evaluation results of SpotGAN after optimizing the BIO on the ZINC
dataset.

Method BIO Validity (%) Uniqueness (%) Novelty (%) Diversity Time (h)
Decorator 0.22 93.58 97.04 92.42 0.89 1.63
SpotGAN 0.24 94.88 95.51 94.31 0.88 16.90

Table B.1 shows the evaluation results of SpotGAN on the ZINC dataset
when the optimized property was BIO. The reinforced training improved the
validity, novelty, and BIO scores.


